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Abstract

Quantum adiabatic algorithm is a method of solving computational problems by evolving the ground state of a slowly varying Ham-
iltonian. The technique uses evolution of the ground state of a slowly varying Hamiltonian to reach the required output state. In some
cases, such as the adiabatic versions of Grover�s search algorithm and Deutsch–Jozsa algorithm, applying the global adiabatic evolution
yields a complexity similar to their classical algorithms. However, using the local adiabatic evolution, the algorithms given by J. Roland
and N.J. Cerf for Grover�s search [J. Roland, N.J. Cerf, Quantum search by local adiabatic evolution, Phys. Rev. A 65 (2002) 042308]
and by Saurya Das, Randy Kobes, and Gabor Kunstatter for the Deutsch–Jozsa algorithm [S. Das, R. Kobes, G. Kunstatter, Adiabatic
quantum computation and Deutsh�s algorithm, Phys. Rev. A 65 (2002) 062301], yield a complexity of order

ffiffiffiffi
N

p
(where N = 2n and n is

the number of qubits). In this paper, we report the experimental implementation of these local adiabatic evolution algorithms on a 2-
qubit quantum information processor, by Nuclear Magnetic Resonance.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Quantum algorithms provide elegant opportunities to
harness available quantum resources and perform certain
computational tasks more efficiently than classical devices.
The idea that a quantum computer could simulate the
physical behavior of a quantum system as well as perform
computation, attracted immediate attention [1,2]. The the-
ory of such quantum computers is now well understood
and several quantum algorithms like Deutsch–Jozsa (DJ)
algorithm [3], Grover�s search algorithm [4], Shor�s prime
factorization algorithm [5], Hogg�s algorithm [6],
Bernstein–Vazirani problem [7], and quantum counting
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[8] have been developed . All these algorithms start from
a well-defined initial state and perform computation by a
sequence of reversible logic gates. After computation, the
final state of the system gives the output. Various methods
are being examined for building a quantum information
processing (QIP) device which is coherent and unitary [9].
Nuclear magnetic resonance has emerged as a leading
candidate for implementation of various quantum compu-
tational problems on a small number of qubits [10–24].

Quantum adiabatic algorithms provide an alternative
method for computing [25,26]. In this method, the compu-
tation is done by evolving the system under a Hamiltonian
for a given amount of time. Such algorithms start from a
suitable input ground state and by evolution under a slowly
time-varying Hamiltonian, reach the desired output state.
Quantum adiabatic algorithms have been efficiently applied
to solve various optimization problems [27–30]. Chuang
et al. have demonstrated the implementation of a quantum
adiabatic algorithm by solving the MAX-CUT [31]
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problem on a 3-qubit system by NMR [32] . In these algo-
rithms, the condition for adiabaticity is fulfilled globally by
using only the minimum energy gap between the ground
state and the first excited state for calculating the time of
evolution. This method of evolution is not efficient in some
cases such as adiabatic Grover�s search algorithm and adi-
abatic Deutsch–Jozsa algorithm as they result in a com-
plexity O(N) (N is the size of the data set), which is as
good as their classical algorithms. However, these algo-
rithms can be improved by application of local adiabatic
evolution, where the adiabatic condition is fulfilled at each
instant of time. This technique has been adopted theoreti-
cally by Roland and Cerf [33] for the adiabatic Grover�s
search algorithm and by Das et al. [34] for adiabatic
Deutsch–Jozsa algorithm yielding a complexity Oð

ffiffiffiffi
N

p
Þ.

Experimental implementation of adiabatic Grover�s search
algorithm based on the proposal of Roland and Cerf and
adiabatic Deutsch–Jozsa algorithm of Das et al., is report-
ed here. Section 2 contains an introduction to adiabatic
algorithms. Section 3 discusses the adiabatic version of
the Grover�s search algorithm proposed by Roland and
Cerf and its NMR implementation. Section 4 discusses
the adiabatic Deutsch–Jozsa algorithm and its NMR
implementation. Section 5 contains the experimental re-
sults, on a two-qubit system, for both these algorithms.
To the best of our knowledge this is the first experimental
implementation of adiabatic Grover�s search and adiabatic
Deutsch–Jozsa algorithms.
2. Adiabatic algorithm

The adiabatic theorem of quantum mechanics states
that when a system is evolved under a slowly time varying
Hamiltonian, it stays in its instantaneous ground state [35].
This fact is used in solving certain computational problems
[27–30]. The problem to be solved is encoded in a final
Hamiltonian (HF), whose ground state is not easy to find.
Adiabatic algorithms start with the ground state of a begin-
ning Hamiltonian (HB) which is easy to construct and
whose ground state is also easy to prepare. The ground
state of HB, which is a superposition of all the eigenstates
of HF, is evolved under a time varying Hamiltonian H (s).
H (s) is a linear interpolation of the beginning Hamiltonian
HB and the final Hamiltonian HF such that

HðsÞ ¼ ð1� sÞHB þ sHF; where 0 6 s 6 1: ð1Þ
The parameter s = t/Ttotal, where Ttotal is the total time of
evolution and t varies from 0 to Ttotal. After evolution un-
der the Hamiltonian H (s) for a time Ttotal, the system is in
the ground state of HF with a probability (1 � e2)2, provid-
ed the evolution rate satisfies,

max
06s61

1; s dHðsÞ
dt

��� ���0; sD E��� ���
g2min

6 e; ð2Þ

and the parameters of the algorithm are chosen to make
e � 1 [25]. The numerator in Eq. (2) is the transition ampli-
tude between the ground state and the first excited state of
H (s), and the denominator is the square of the smallest
energy gap (gmin) between them. Ideally the time of evolu-
tion (Ttotal) must be infinite. However, as long as the gap is
finite, for any finite and positive e, the time of evolution can
be finite. The time of evolution of the algorithm is deter-
mined by the minimum energy gap between the ground
state and the first excited state. In the adiabatic case, the
time of evolution determines the complexity of the algo-
rithms (that is how long it takes for the task to be complet-
ed), which can then be compared to the complexity of the
discrete algorithms in classical and quantum paradigms.
The time of evolution is measured in units of natural time-
scale associated with the system, �T which is Oð�h=�EÞ where
�E is the fundamental energy scale associated with the phys-
ical system used to construct the states [34].

In the actual implementation, the Hamiltonian H (s) is
discretized into M + 1 steps as HðmMÞ where m goes from
0 fi M [32,36]. Thus, the time varying Hamiltonian H (s)
goes from beginning Hamiltonian to final Hamiltonian in
M + 1 steps. As the total number of steps increase, the evo-
lution becomes more and more adiabatic [32]. The evolu-
tion operator for the mth step is given by [32]

Um ¼ exp �i 1� m
M

� �
HB þ

m
M

HF

h i
Dt

n o
; ð3Þ

where Dt = T/(M + 1). The total evolution is given by,

U ¼
YM
m¼0

Um: ð4Þ

Since,HB andHF do not commute in general, the evolution
operator of Eq. (3) is approximated to first order in Dt, by
the use of the Trotter�s formula [32] as

Um � exp �iHB 1� m
M

� �Dt
2

� �
� exp �iHF

m
M

Dt
n o

� exp �iHB 1� m
M

� �Dt
2

� �
: ð5Þ

Thus, in each step only a small evolution of the system
from ground state of HB towards the ground state of HF

takes place.
3. Grover�s search algorithm

Suppose we are given an unsorted database of N items
and one of those items is marked. To search for the marked
item classically, it would require on an average N/2 queries.
However, using quantum resources, the algorithm pre-
scribed by Grover [4] performs the same search with
Oð

ffiffiffiffi
N

p
Þ queries. The algorithm starts with an equal super-

position of states, representing the items, repeatedly flips
the amplitude of the marked state (done by the oracle) fol-
lowed by the flip of the amplitudes of all the states about
the mean. The number of times this process is repeated
determines the complexity of the algorithm and this scales
with the size of the database as Oð

ffiffiffiffi
N

p
Þ.
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Fig. 1. The plot of s as a function of t 0 for the 2-qubit adiabatic Grover�s
search algorithm (Ref. Eq. (11)). s (t 0) is plotted for that interval of t 0 in
which s goes from 0 fi 1.
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In the adiabatic version, the system is evolved under a
time-dependent Hamiltonian which is a linear interpolation
of HB and HF. As n qubits are used to label a database of
size N (=2n), the resulting Hilbert space is of dimension N.
The basis states in this space are |iæ where i = 0, . . . ,N. HB

is chosen such that the ground state is a linear superposi-
tion of all the basis states. Therefore for a 2-qubit case,

jwBi ¼ 1
2
j00i þ j01i þ j10i þ j11ið Þ: ð6Þ

HB ¼ I � jwBihwBj;¼ I � 1

4

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

0
BBB@

1
CCCA: ð7Þ

The final Hamiltonian has the marked state |wFæ as the
ground state.

HF ¼ I � jwFihwFj: ð8Þ
The rate at which the interpolating Hamiltonian H (s) (giv-
en by Eq. (1)) changes from HB to HF depends on the
condition,

ds
dt

����
���� 6 e

g2ðsÞ
hdH
ds i

�� �� : ð9Þ

Following Roland and Cerf [33], t is obtained as a function
of s as,

t ¼ 1

2e
Nffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p arctanf
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p
2s� 1ð Þgþ arctan

ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

ph i
:

ð10Þ
Taking t 0 = et and on inverting the above function, s (t 0) is
obtained as

sðt0Þ¼1

2

1ffiffiffiffiffiffiffiffiffiffiffi
N�1

p tan
2
ffiffiffiffiffiffiffiffiffiffiffi
N�1

p
t0

N
�arctan

ffiffiffiffiffiffiffiffiffiffiffi
N�1

p
 !( )

þ1

" #
:

ð11Þ
The plot of this function for N = 4 (for a 2-qubit case) is
given in Fig. 1. In the experiment, the time of evolution
is varied according to Eq. (11). It has been shown by Ro-
land and Cerf [33] that with this adiabatic evolution, the
complexity of the algorithm is Oð

ffiffiffiffi
N

p
Þ.

3.1. Experimental implementation

The NMR Hamiltonian for a weakly coupled two-spin
system is

H ¼ �x1Iz1 � x2Iz2 þ 2pJ 12Iz1Iz2; ð12Þ
where x1 and x2 are Larmour frequencies and J12 the indi-
rect spin–spin coupling. The beginning Hamiltonian for a
2-qubit Grover�s algorithm as stated in Eq. (7), written in
terms of spin-half operators, is

HB ¼ 3
4
I � 1

2
fIx1 þ Ix2 þ 2Ix1Ix2g: ð13Þ

The identity term does not cause any evolution of the state
and so it can be omitted, yielding the beginning Hamiltoni-
an without the negative sign and the factor half as
~HB ¼ Ix1 þ Ix2 þ 2Ix1Ix2: ð14Þ
The evolution under ~HB can be simulated by a free evolu-
tion under the Hamiltonian H of Eq. (12) between two p/2
pulses with appropriate phases.

exp i
p
2

Iy1þ Iy2
� �n o

� exp iHTf g � exp �i
p
2

Iy1þ Iy2
� �n o

¼ expfiðx1Ix1þx2Ix2þ 2JIx1Ix2ÞTg ¼ expfiH0Tg: ð15Þ

Let the state |00æ be the marked state. The final Hamiltoni-
an is,

H j00i
F ¼ I �

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0
BBB@

1
CCCA ð16Þ

In terms of spin operators the final Hamiltonian is,

H
j00i
F ¼ 3

4
I � 1

2
½I z1 þ Iz2 þ 2Iz1Iz2�: ð17Þ

The final Hamiltonian keeping only the spin operator
terms, without the negative sign and the factor half is

~H
j00i
F ¼ I z1 þ I z2 þ 2Iz1Iz2: ð18Þ

Similarly, the final Hamiltonian for other states being
marked, in terms of the spin-half operators, is

~H
j01i
F ¼ I z1 � I z2 � 2Iz1Iz2; ð19Þ

~H
j10i
F ¼ �Iz1 þ Iz2 � 2I z1Iz2; ð20Þ

~H
j11i
F ¼ �Iz1 � Iz2 þ 2I z1Iz2: ð21Þ

The schematic representation of the experiment for the adi-
abatic Grover�s algorithm in a 2-qubit system (consisting of
a 1H spin and a 13C spin) is shown in Fig. 2A. The exper-
iment is divided into three parts. The first part (preparation
part) consists of preparation of pseudo-pure state (PPS)



Fig. 2. Pulse sequence for the implementation of adiabatic Grover�s search algorithm. The narrow filled pulses, which do not have any angle specified on
them, represents 90� pulses while the broad unfilled pulses represents 180� pulses. The phases (�X and �Y represents �X and �Y phases, respectively) are
specified on each pulse. (A) Schematic representation of the pulse programme. The part �preparation� consists of creation of PPS, followed by equal
superposition. The second part is adiabatic evolution done in 60 iterations and the third part is tomography of the final density matrix. (B) Pulse sequence
for preparation of PPS and equal superposition. (C) Pulse sequence for the adiabatic evolution when the |00æ is been searched. In this sequence, the system
is evolved under HB for time T � s and under HF for a time s. This is repeated 60 times for various s varying it from 0 fi T as s is varied from 0fi 1
according to the Eq. (13) in equal intervals of t 0. The total time in each iteration is T (=1/pJ) which is 1.52 ms. The pulse sequences (D)–(F) when HF is
encoded to search for the states |01æ, |10æ, and |11æ, respectively.
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Table 1
The phases /1 and /2 and the flip angle of the h pulses of the experiments
A and B (see Eqs. (26) and (27))

/1 /2 h a b

I �Y — 0 X Z

II X — 0 Y Z

III �Y �Y p/2 X X

IV �Y X p/2 X Y

V X �Y p/2 Y X

VI X X p/2 Y Y

a and b denotes the various components of the spin operator terms of the
first and the second qubit whose magnitudes were determined by that
particular experiment.
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followed by equal superposition. The second part is the
adiabatic evolution, and the third part is the tomography
of the resultant state. The pulse programme for the prepa-
ration of PPS and equal superposition is shown in Fig. 2B.
The PPS is prepared by the method of spatial averaging
[37]. After preparing PPS, equal superposition of states is
obtained by application of the Hadamard gate on both
the qubits. The Hadamard gate is implemented by (p/2)y
pulses, followed by px pulses on both proton and carbon
spins (Fig. 2B) [15]. The next stage consists of adiabatic
evolution which has been carried out in the present work
in 60 steps. Each step of the adiabatic evolution
(Figs. 2C–F) consists of evolution under the final Hamilto-
nian for a time s sandwiched between two evolutions under
the beginning Hamiltonian for a time (T � s)/2. T is the to-
tal evolution time for one step and is equal to 1/pJ. The
value of sð¼ s� 1

pJÞ varies from 0 to T takes place as s

increases from 0 to 1 according to Eq. (11), in 60 steps.
The pulse sequence for the beginning Hamiltonian is a free
evolution of the system juxtaposed between two p/2 pulses
with appropriate phases on each of the spins (the part
marked as HB in Figs. 2C–F). The pulse sequence for the
final Hamiltonian depends on the marked state as stated
in Eqs. (19)–(21). If the state |00æ is the marked state, then
the pulse sequence for the implementation of the final
Hamiltonian is a free evolution of the system under the
NMR Hamiltonian juxtaposed between two p pulses on
each of the spins (Fig. 2C). Similarly, if the state |01æ is
marked the pulse sequence for the final Hamiltonian is a
free evolution of the system between two p pulses on the
spin 1 (Fig. 2D), if the state |10æ is marked then the pulse
sequence is a free evolution between two p pulses on the
spin 2 (Fig. 2E) and if the state |11æ is marked, then the
pulse sequence simulating the final Hamiltonian is just a
free evolution of the system under the NMR Hamiltonian
(Fig. 2F).

The third stage of the experiment is the tomography of
the final density matrix after the adiabatic evolution. The
density matrix of a 2-spin system is a 4 · 4 matrix consist-
ing of 6 independent off-diagonal complex elements (the
remaining 6 are their complex conjugates), and the four
diagonal elements which are the populations of the various
levels. The diagonal elements are measured by 90� pulses
on each qubit preceded by a gradient pulse. The six off-di-
agonal elements consist of four single quantum (SQ), one
double quantum (DQ), and one zero quantum (ZQ) coher-
ences. The real and the imaginary SQ, DQ, and ZQ coher-
ences in terms of the spin operators are;

SQreal
i ¼ I ix � 2ðI ixI jzÞ;

SQimag
i ¼ I iy � 2ðI iyI jzÞ;

DQreal ¼ 2ðI ixI jx � I iyI jyÞ;
DQimag ¼ 2ðI iyI jx þ I ixI jyÞ;
ZQreal ¼ 2ðI ixI jx þ I iyI jyÞ;
ZQimag ¼ 2ðI iyI jx � I ixI jyÞ; ð22Þ
where i „ j = 1,2 represents the qubits. Although the single
quantum terms are directly observable, for proper scaling,
all the off-diagonal elements are observed by a common
protocol of two experiments:

A :
p
2

� �i
/1

hð Þj/2
! Gz !

p
2

� �i
y
; ð23Þ

B :
p
2

� �i
/1

hð Þj/2
! Gz ! pð Þj p

2

� �i
y
; ð24Þ

where h denotes the pulse angle, /1, /2 the pulse phases
and Gz a gradient pulse. The first two pulses of the exper-
iment A (depending on the pulse angle h and the pulse
phases /1 and /2) convert terms like Iia + 2IiaIjb into diag-
onal terms given by Iiz + 2IizIjz, where a and b denote the x,
y, or z component of the spin operators of the first and the
second qubit, respectively. The gradient destroys all the
transverse magnetization retaining only the longitudinal
terms. The last pulse converts the retained longitudinal
magnetization Iiz + 2IizIjz into observable terms Iix + 2Iix-
Ijz. Thus, the magnitude of Iia + 2IiaIjb is mapped on to
Iix + 2IixIjz which is then observed. In experiment B, a p-
pulse is applied on the spin j just before the p/2 pulse on
the spin i. This creates the observable term Iix � 2IixIjz.
The sum and difference of the two experiments yields 2Iia
and 2Iia Ijb, respectively. Six different experiments are need-
ed to be performed to map the whole density matrix (real
and imaginary). The various pulse angles and phases re-
quired during the experiment, and the resultant terms that
are observed due to them are given in Table 1. Experiments
I and II yield the SQ, and experiments III–VI yield the ZQ
and DQ coherences.

4. Deutsch–Jozsa algorithm

The Deutsch–Jozsa algorithm determines whether a
binary function f (x),

f ðxjx 2 f0; 1gnÞ ! f0; 1g;
is Constant or Balanced [3]. A constant function implies
that the function has the same value 0 or 1 for all x. A bal-
anced function implies that the function f is 0 for half the
values of x and 1 for the other half . For a two qubit
case the constant and the balanced functions are given in
Table 2.



Table 2
The two constant and the six balanced functions for the 2-bit Deutsch–
Jozsa algorithm

Constant Balanced

f (00) 0 1 1 1 1 0 0 0
f (01) 0 1 1 0 0 1 0 1
f (10) 0 1 0 1 0 0 1 1
f (11) 0 1 0 0 1 1 1 0
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In the adiabatic version of the Deutsch–Jozsa algo-
rithm, the beginning Hamiltonian and its ground state,
for a 2-qubit system, are given by Eqs. (7) and (6), respec-
tively. The final Hamiltonian is given by Eq. (8) and the
ground state of the final Hamiltonian for two qubits is
of the form [34];

jwFi ¼ aj00i þ bffiffiffi
3

p j01i þ j10i þ j11ið Þ; ð25Þ

where

a ¼1
4
jð�1Þf ð00Þ þ ð�1Þf ð01Þ þ ð�1Þf ð10Þ þ ð�1Þf ð11Þj;

b2 ¼1� a2: ð26Þ

From Eq. (26) it is seen that when a = 1 the function f

is constant, and when a = 0 then it is balanced. Thus, a
is chosen depending on whether the function to be
encoded in the final Hamiltonian is constant or bal-
anced. Using Eqs. (1), (7), (8), (25), and (26) the matrix
for the interpolating Hamiltonian (H (s)) can be written
as [34];

HðsÞ ¼ I � 1� s
4

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

0
BBB@

1
CCCA� s

3

3a 0 0 0

0 b b b

0 b b b

0 b b b

0
BBB@

1
CCCA:

ð27Þ

Das et al. [34] have shown that on evolution under the
Hamiltonian H (s) takes the initial state |wBæ to the solution
state |wFæ. In the next section, we describe an NMR imple-
mentation of the above algorithm.

4.1. NMR implementation

The adiabatic Deutsch–Jozsa algorithm also, is imple-
mented on the 2-qubit system. The beginning Hamiltonian
in terms of the spin-half operators is the same as given in
Eq. (14), and its implementation has been discussed in
Section 3.1.

The final Hamiltonian, obtained from Eqs. (7), (8), (25),
and (26), for constant case (a=1) yields,

H c
F ¼ I �

1 0 0 0

0 0 0 0

0 0 0 0

0
BBB@

1
CCCA; ð28Þ
0 0 0 0
and for balanced case (a=0) yields,

Hb
F ¼ I � 1

3

0 0 0 0

0 1 1 1

0 1 1 1

0 1 1 1

0
BBB@

1
CCCA: ð29Þ

The above final Hamiltonians in terms of spin-half opera-
tors can be written, respectively as,

Hc
F ¼ 3

4
I � 1

2
ðI z1 þ I z2 þ 2Iz1Iz2Þ; ð30Þ

and,

Hb
F ¼ 3

4
I � 1

3
½�1

2
ðIz1 þ Iz2 þ 2Iz1Iz2Þ þ 2ðIx1Ix2

þ Iy1Iy2Þ þ Ix1 þ Ix2 � 2ðIx1Iz2 þ Iz1Ix2Þ�: ð31Þ

As the identity does not cause any evolution of the state we
consider only the spin operator terms. Thus, the final
Hamiltonian keeping only the spin operators (dropping
the minus sign), for the constant case, can be written as

~H
c

F ¼ 1
2
fIz1 þ I z2 þ 2Iz1Iz2g; ð32Þ

and for the balanced case as

~H
b

F ¼ �1
6
ðIz1 þ Iz2 þ 2Iz1I z2Þ þ 2

3
ðIx1Ix2 þ Iy1Iy2Þ þ 1

3
Ix1

þ 1
3
Ix2 � 2

3
ðIx1Iz2 þ Iz1Ix2Þ: ð33Þ

The signs of Eqs. (14), (32), and (33) are changed for
consistency. Since the various terms in Eq. (33) do not
commute, the evolution under this Hamiltonian would re-
quire a complex pulse sequence in NMR. However, we
have found that by keeping only the diagonal terms in
the Eq. (33), the pulse sequence simplifies considerably with
the information regarding the balanced nature of the prob-
lem still encoded in it. This truncated final Hamiltonian for
the balanced case is given by;

ð ~Hb

FÞ
trunc ¼ �1

6
ðIz1 þ Iz2 þ 2Iz1Iz2Þ: ð34Þ

The opposite signs of Eqs. (32) and (34) distinguish the
constant and the balanced case. In the following, we show
that the balanced nature of the Deutsch–Jozsa problem is
still encoded in ð ~Hb

FÞ
trunc. Substituting a = 0 and b = 1

and dropping the off-diagonal terms from the last part of
Eq. (27), we obtain

~H
bðsÞ ¼ I � 1� s

4

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

0
BBB@

1
CCCA� s

3

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0
BBB@

1
CCCA:

ð35Þ
The eigenvalues of this Hamiltonian are:

k0 ¼ 1
6
½3þ 2s�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ sð7s� 15Þ

p
�; ð36Þ

k1 ¼ 1
6
½3þ 2sþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ sð7s� 15Þ

p
�; ð37Þ

k2 ¼ k3 ¼ 1� s
3
: ð38Þ
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The values of k0, k1, k2, and k3 as a function of s are plotted
in Fig. 3. k0 is the ground state. As s increases from 0, k0
continues to be the ground state and becomes the ground
state of the final Hamiltonian in the limit s fi 1. The eigen-
vectors corresponding to k0, k1, k2, and k3 are, respectively,
obtained as;

v0 ¼

3�s�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9�15sþ7s2

p
3ðs�1Þ

1

1

1

0
BBBB@

1
CCCCA; v1 ¼

3�sþ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9�15sþ7s2

p
3ðs�1Þ

1

1

1

0
BBBB@

1
CCCCA;

v2 ¼

0

�1

0

1

0
BBB@

1
CCCA; v3 ¼

0

�1

1

0

0
BBB@

1
CCCA; ð39Þ

The final state to which the system converges after the
evolution is

lim
s!1

v0 ¼

0

1

1

1

0
BBB@

1
CCCA; ð40Þ

which is the desired output state.
The energy gap between the ground state and the states

corresponding to k2 and k3 goes to zero as s fi 1 as shown
in Fig. 3. However, there is no transition from k0 to k2, k3
as the transition amplitude given by the numerator in Eq.
(2) is zero in these cases. Therefore, the transition ampli-
tude from the ground state k0 to the next excited state k1
is relevant for calculation of s (t). The minimum energy
gap between k0 and k1, needed in Eq. (2), is obtained for
s . 1 as seen in Fig. 3. Since the algorithm is implemented
using local adiabatic evolutions we need to change s (t) such
that the adiabatic condition [33]

ds
dt

6 e
gðsÞj j2
dH
ds

	 
�� �� ; ð41Þ
λ(
s)

s

λ2 λ3,

λ0

λ1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
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 0.8

 1

Fig. 3. The eigenvalues of ~H
bðsÞ for the Deutsch–Jozsa algorithm (Eqs.

(36)–(38)) plotted as a function of parameter s. k0 is the ground state. k1,
k2, and k3 are the excited states. k2 and k3 are degenerate for all values of s.
k0 approaches k2 and k3 as sfi 1. k1 changes marginally as a function of s.
is met at each time interval. Here, g (s) is the energy gap
between the ground state and the first excited state, given
by 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 15sþ 7s2

p
and |ÆdH/dsæ| = HF � HB. The Hamil-

tonian is evolved at a rate that is a solution of

ds
dt

¼ e
gðsÞj j2

HF � HBj j ð42Þ

On integrating Eq. (42), we obtain t as a function of s.

t ¼ 1

e
14s� 15

2
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7s2 � 15sþ 9

p þ k; ð43Þ

where the constant of integration k ¼ ð5=e2
ffiffiffi
3

p
Þ to obey

s = 0 at t = 0. Inverting this function we obtain s (t 0) as

sðt0Þ ¼ 3

14
5�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
225þ 24t0 55

ffiffiffi
3

p
� 183t0 þ 60

ffiffiffi
3

p
t02 � 18t03

� �q
3þ 20

ffiffiffi
3

p
t0 � 12t02

2
4

3
5

ð44Þ

where t 0 is et. The plot of s as a function of t 0 is shown in
Fig. 4. From Figs. 3 and 4 it is seen that the rate of change
of s (and hence of the Hamiltonian) is fast when the energy
gap between k0 and k1 is large, and slow when the gap is
small. In practice the time of evolution for HB and HF is
given by (1 � s) · T and s · T, respectively, where T is 1/
pJ and s is varied from 0 to 1 according to Eq. (43). In
our implementation, the t 0 interval for which s varies from
0 to 1 is divided in 80 equal steps, and the corresponding
values of s for each step (calculated from Eq. (48)) are
substituted in the evolution time of HB and HF.

On integrating Eq. (46) from s = 0 to s = 1, we get the
total time of evolution

T total ¼
1

e
2ffiffiffi
3

p �T : ð45Þ

Ttotal is given in the units of �T which is the timescale asso-
ciated with the physical system used [34]. The timescale
0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

t′

s(
t′)

Fig. 4. Plot of the parameter s as a function of t 0 for the Deutsch–Jozsa
algorithm (Eq. (44)). s is 0 for t 0 = 0 and s is 1 for t0 ¼ 2ffiffi

3
p .This shows that s

changes rapidly at the beginning when |k0 � k1| is large (Fig. 1) and later it
changes slowly as |k0�k1| becomes small.



292 A. Mitra et al. / Journal of Magnetic Resonance 177 (2005) 285–298292 A. Mitra et al. / Journal of Magnetic Resonance 177 (2005) 285–298
associated with evolution under the NMR Hamiltonian is
�10�3 s. The total time of evolution of the experiment
(Ttotal) is given by 80 · T, where T is the time for one step
(see Fig. 5B). For the choice e � 10�2, T � 60 · 10�3 s in
our case.

4.2. Experimental implementation

The experimental implementation of adiabatic Deutsch–
Jozsa algorithm on a 2-qubit system (consisting of a 1H
spin and a 13C spin) also consists of three parts namely
preparation, adiabatic evolution and tomography of the fi-
nal density matrix. The preparation of the pseudo-pure
state (PPS) and making of equal superposing of states as
well as the tomography of the final states has already been
discussed in Section 3. So we only describe the method
of implementation of the final Hamiltonian for the
Deutsch–Jozsa algorithm.

The pulse sequence for the implementation of the con-
stant case final Hamiltonian ð ~Hc

FÞ is given in Fig. 5B.
The beginning Hamiltonian is implemented by a free evolu-
Adiabatic EvPreparation

H1

C
13

T–τ
2

T–τ
2

HH
B

Y

X

X

T

τ

YY

HB

H1

C13

T–τ
2

T +

T–τ
2

Y

Y X
τ

Tf

Y

ττ
Y

A

B

C

Fig. 5. Pulse programme for the implementation of the adiabatic Deutsch–Jozs
on them are 90� pulses and all the broad unfilled pulses are 180� pulses.The phas
value J/2 during all the evolutions. (A) Block diagram representation of the p
Fig. 2. The adiabatic evolution is shown in (B) and (C). The measurement proc
text. (B) Pulse sequence of the adiabatic evolution under the interpolating
Hamiltonian and the pulse sequence implements the evolution as given in Eq. (1
in it. T is the effective time of evolution in each cycle and s goes from 0fi T sl
represents the pulse sequence for the implementation of the final Hamiltonian w
takes place under the free Hamiltonian given by Eq. (12). During the period T

(45). The p-pulse between Tf and Tj and at the end of the Tj restores the corre
given by and the effective time of evolution for Hb

F is just s. The time s is increm
tion juxtaposed between p/2 pulses with required phases
(Fig. 5B). The implementation of the final Hamiltonian
for the constant case is a free evolution under the NMR
Hamiltonian of Eq. (14), juxtaposed between two p-pulses
as shown in Fig. 5B. In the balanced case, the implementa-
tion of the beginning Hamiltonian is same as in Fig. 5B.
However, the implementation of the final Hamiltonian
ð ~Hb

FÞ
trunc is done in two parts (Fig. 5C). The first part is

a free evolution under the Hamiltonian given in Eq. (14)
(Tf period in Fig. 5C). The operator corresponding to such
an evolution for time s will be of the form;

eipJð�Iz1�Iz2þ2Iz1Iz2Þs: ð46Þ
In the second evolution of 2s, the chemical shifts are refo-
cused so that the system evolves only under its scalar cou-
pling Hamiltonian 2p JIz1Iz2. Just before and after the
evolution p-pulses with appropriate phases are put on each
of the spins to flip the sign of the corresponding spin oper-
ator (Tj period in Fig. 5C). The operator for the sequence
of two pulses with an intermediate evolution for 2s is of
the form
olution Measurement

iterations
80

T

T–τ
2

T–τ
2

H
B

c
F

Y

Y

X

X
τ

Y

HBH
b
F

T–τ
2

T–τ
2

2τ

Y

Y

XX

X
ττ

Tj

Y

τ
Y

a algorithm. The narrow filled pulses which do not have any angle specified
e of the pulses are specified on each of them. The frequency offset is set at a
ulse programme. The preparation sequence has already been explained in
ess is the tomography of the final density matrix which is explained in the
Hamiltonian H (s) for the constant case. HB represents the beginning
5). H c

F represents the final Hamiltonian when the constant case in encoded
owly in 80 steps. (C) The pulse sequence of H (s) for the balanced case. Hb

F

hen the balanced case is encoded in it. During the period Tf, the evolution

j, the evolution takes place under the J-coupling Hamiltonian given in Eq.
ct sign of the coupling Hamiltonian such that the total evolution for 3s is
ented in 80 steps from 0fi T, where T (=1/pJ) is 1.5 ms in our experiments.
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e�iðIx1Þp � eipJð2Iz1Iz2Þ2s � eiðIx1Þp ¼ e�ipJð2Iz1Iz2Þ2s: ð47Þ
As these two evolutions given in Eqs. (46) and (47) com-
mute, the effective evolution for the 3s period is:

eipJð�Iz1�Iz2þ2Iz1Iz2Þs � e�ipJð2Iz1Iz2Þ2s ¼ eipJð�Iz1�Iz2�2Iz1Iz2Þs: ð48Þ
Thus, the evolution during Tj cancels the J-evolution dur-
ing Tf and adds a minus sign to it, yielding the effective
Hamiltonian of Eq. (48) and an effective evolution time
of s. An evolution time of s=1/pJ implements the full
Hamiltonian of Eq. (39) as required for adiabatic evolu-
tion. Overall the cycle time for each step for the balanced
case is increased to T + 2s.

5. Experimental results

The experiments have been carried out using carbon-13
labeled chloroform (13CHCl3) where the two spins 1H and
13C form the two-qubit system. The proton spin represents
the first qubit and carbon-13 the second. The sample of
13CHCl3 was dissolved in the solvent CDCl3 and the exper-
iments were performed at room temperature in a magnetic
field of 11.2 Tesla. At this field the 1H resonance frequency
is 500.13 MHz and the 13C resonance frequency is
125.76 MHz. The indirect spin–spin coupling (the J-cou-
pling) between the two spin is 210 Hz. During the entire
experiment, the transmitter frequencies of 1H and 13C are
set at a value J/2 away from resonance to achieve the con-
dition x1 = x2 = pJ. The equilibrium spectra of the two
qubits are shown in Fig. 6A, and the spectrum correspond-
ing to |00æ PPS is shown in Fig. 6B. To quantify the exper-
imental result we calculate the average absolute deviation
[38] of each element of the experimentally obtained density
matrix from each element of the theoretically predicted
density matrix given by,

Dx ¼ 1

N 2

XN
i;j¼1

jxTi;j � xEi;jj ð49Þ
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consists of one single quantum coherence for each spin and the
�Coherence� spectrum contains no signal [see text]. (B) The spectra of
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coherence for each of the spins. The coherence spectrum consists of
another observable SQ coherence for each spin [see text]. The observed
intensity of the SQ coherences in the �Population spectrum� is nearly half
compared to those in the �Coherence spectrum� according to the
expectations.
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where N = 2n (n being the number of qubits), xTi;j is (i, j)th
element of the theoretically predicted density matrix and
xEi;j is (i, j)th element of the experimentally obtained density
matrix.

5.1. Grover�s search algorithm

The experimental spectra corresponding to the implemen-
tation of Grover�s search algorithm on the above two-qubit
system are given in Fig. 7. the spectra given in Fig. 7A (i–iv)
contain the reading of populations after respectively search-
ing states |00æ, |01æ, |10æ, and |11æ. The population spectra are
obtainedby applicationof a gradient followedby ap/2 pulse.
Depending on the final state, the population spectra consist
of one single spectral line for each spin. These correspond to,
| 00æ fi |01æ and |00æ fi |10æ transition when the searched
state is |00æ (Fig. 7A, i); |01æ fi | 00æ and |01æ fi |11æ when
the search state |01æ (Figs. 7A, ii); |10æ fi |00æ and
|10æ fi |11æ when the search state |10æ (Fig. 7A, iii);
|11æ fi |01æ and |11æ fi |10æ when the search state | 11æ (Fig.
7A, iv). The coherence spectra in Fig. 7B have been obtained
by observing the searched state without application of any rf
pulses. The absence of any signal in the spectra confirms that
there is no single quantum coherences after the search. To
check for the absence of zero quantum and double quantum
coherences as well, the entire density matrix has been tomo-
graphed. Fig. 8A shows the theoretical and the experimental
densitymatrices after the adiabatic evolution,when state |00æ
has been searched. Themean deviation of the experimentally
obtained density matrix from the theoretically predicted one
(calculated using Eq. (49)) is 2.49%. Similarly Figs. 8B–D
contain the theoretically predicted and experimentally ob-
tained density matrices when the states |01æ, |10æ, and |11æ
have been searched. The mean deviation of the experimental
density matrices from their theoretically predicted counter-
parts are 1.92, 1.89, and 1.97%, respectively.

5.2. Deutsch–Jozsa algorithm

5.2.1. Constant case

For the constant case (Eq. (26)), the state expected
after the evolution (using the pulse sequence given in
Fig. 5B) is |00æ. The density matrix consists of population
in |00æ state and no coherences. The spectrum correspond-
ing to the population for such a state, obtained by appli-
cation of a gradient followed by p/2 pulses on each of the
spins, consists of one single quantum coherence in each
spin (�Population spectrum� in Fig. 9A). The spectrum
for coherence, observed without application of any pulses
on any of the spins, has a near absence of any signal (�Co-
herence spectrum� in Fig. 9A). Further confirmation of
the final state is done by the tomography of the complete
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density matrix. The Fig. 10 shows the tomography of the
experimental and theoretically predicted density matrices
of the final state for the constant case. The mean devia-
tion of the experimental density matrix from the theoret-
ical one is 5.28%.

5.2.2. Balanced case

For the balanced case (Eq. (31), a = 0 and b = 1), the
state expected after the evolution (using the pulse se-
quence of Fig. 5C) is 1ffiffi

3
p ðj01i þ j10i þ j11iÞ. The theoreti-

cal density matrix of the final state is given in Fig. 11A.
This state theoretically has three diagonal elements, one
SQ coherence of each qubit and a ZQ coherence between
the two qubits, all of equal intensity. This state is con-
firmed by the spectra shown in Fig. 9B and the density
matrix in Fig. 11B. The mean deviation of the experimen-
tally obtained density matrix from the theoretically pre-
dicted one is 17.2%. It is seen that in the density matrix
obtained from experiment, the SQ coherence of 13C (sec-
ond qubit) and the ZQ coherence between 13C and 1H
have significantly reduced intensity, compared to the the-
oretically expected values.

There are three sources of error in adiabatic algorithms.
e gives a measure of the first source of error. Theoretically,
the total time of evolution in adiabatic algorithms should
be infinite. However, in practice the evolution is terminated
once the state is supposed to have been reached with suffi-
ciently high probability given by (1 � e2)2 which in our case
(for e = 10�2) is obtained to be 99.98%. The second source
of error is due to neglect of O(Dt3) terms in the Trotter�s
Formula (Eq. (5)). The maximum error introduced due to
this is �0.92% which can be safely neglected.

The third source of error is due to decoherence effects
arising from the interaction of the spins with their sur-
roundings. To study decoherence, the relaxation times T1

and T2 of
1H and 13C were measured. The T2 for SQ coher-

ences were measured by CPMG sequence. For the mea-
surement of ZQ and DQ coherence decay rate, the term
I1xI2x was created and its relaxation rate was measured
by CPMG sequence. The T2 of SQ coherence of 1H was
found to be 3.4 s and for 13C it was found to be 0.29 s.
The decay rate of I1xI2x term was found to be 0.19 s. The
T1 for 1H and 13C measured from the initial part of the
inversion recovery experiment was found to be 21 s for
1H and 16 s for 13C. Using these measured values of T1

and T2 the simulation for the balanced case was repeated
including relaxation using Bloch�s equations [39]. Signifi-
cant decay of the carbon coherences was observed. The
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mean deviation of the of the experimental density matrix
(Fig. 11B) from the theoretical density matrix including
relaxation (Fig. 11C) is found to be 8.0%.

The observed mean deviation between the theoretically
expected and the experimentally obtained density matrices
for the Grover�s search and the constant case of the Deu-
tsch–Jozsa are small (<2 and <6%, respectively) while that
for the balanced case of the Deutsch–Jozsa is large (�17%).
In the first two cases, the results are encoded in the diago-
nal elements of the density matrix, which are attenuated by
the spin lattice relaxation, the times for which are large
(>16 s). On the other hand, in the balanced Deutsch–Jozsa
case, there are off-diagonal elements as well which are
attenuated by spin–spin relaxation, the times for which
are small (<4 s for 1H and <0.3 s for 13C). The decoherence
times thus have a large effect in this case. A correction for
the decoherence has improved the mean deviation consid-
erably (reduced to �8%), confirming the successful imple-
mentation of these algorithms.

6. Conclusion

In this paper, we have demonstrated the experimental
implementation of Grover�s search and Deutsch–Jozsa
algorithms by using local adiabatic evolution in a two-qu-
bit quantum computer by nuclear magnetic resonance tech-
nique. We have suggested a different Hamiltonian for the
adiabatic Deutsch–Jozsa algorithm which is diagonal in
the computational basis and hence easier to implement
by NMR. To the best of our knowledge, this is the first
experimental implementation of these two algorithms by
adiabatic evolution. We believe that this work will provide
impetus to solving other problems by adiabatic evolution.
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